Quotient Mapping is Linear Transformation
Jump to navigation
Jump to search
Theorem
Let $K$ be a field.
Let $V$ be a vector space over $K$.
Let $M$ be a subspace of $V$.
Let $V / M$ be the quotient vector space.
Let $Q: V \to V / M$ be the quotient mapping.
Then $Q$ is a linear transformation.
Proof
Let $\lambda, \mu \in K$ and $x, y \in V$.
Then we have:
\(\ds \map Q {\lambda x + \mu y}\) | \(=\) | \(\ds \paren {\lambda x + \mu y} + M\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\lambda x + M} + \paren {\mu y + M}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \paren {x + M} + \mu \paren {y + M}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \map Q x + \mu \map Q y\) |
using the definition of vector addition and scalar multiplication for $V/M$.
$\blacksquare$
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next): Appendix $\text{A}$ Preliminaries: $\S 1.$ Linear Algebra