Quotient Ring is Ring/Quotient Ring Addition is Well-Defined

From ProofWiki
Jump to navigation Jump to search


Let $\struct {R, +, \circ}$ be a ring whose zero is $0_R$ and whose unity is $1_R$.

Let $J$ be an ideal of $R$.

Let $\struct {R / J, +, \circ}$ be the quotient ring of $R$ by $J$.

Then $+$ is well-defined on $R / J$, that is:

$x_1 + J = x_2 + J, y_1 + J = y_2 + J \implies \paren {x_1 + y_1} + J = \paren {x_2 + y_2} + J$


From Ideal is Additive Normal Subgroup that $J$ is a normal subgroup of $R$ under $+$.

Thus, the quotient group $\struct {R / J, +}$ is defined, and as a Quotient Group is Group, $+$ is well-defined.