Quotient and Remainder to Number Base/General Result

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z: n > 0$ be an integer.

Let $n$ be expressed in base $b$:

$\ds n = \sum_{j \mathop = 0}^m {r_j b^j}$

that is:

$n = \sqbrk {r_m r_{m - 1} \ldots r_2 r_1 r_0}_b$

Let $0 \le s \le m$.


Then:

$\floor {\dfrac n {b^s} } = \sqbrk {r_m r_{m - 1} \ldots r_{s + 1} r_s}_b$

and:

$\ds n \mod {b^s} = \sum_{j \mathop = 0}^{s - 1} {r_j b^j} = \sqbrk {r_{s - 1} r_{s - 2} \ldots r_1 r_0}_b$

where:

$\floor {\, \cdot \,}$ denotes the floor function
$n \mod b$ denotes the modulo operation.


Proof

We have:

\(\ds \frac n {b^s}\) \(=\) \(\ds \frac {\sum_{j \mathop = 0}^m r_j b^j} {b^s}\)
\(\ds \) \(=\) \(\ds \frac {\sum_{j \mathop = 0}^{s - 1} r_j b^j} {b^s} + \sum_{j \mathop = 0}^{m - s} r_{s + j} b^j\)
\(\ds \) \(=\) \(\ds \frac {\sum_{j \mathop = 0}^{s - 1} r_j b^j} {b^s} + \sqbrk {r_m r_{m - 1} \ldots r_{s + 1} r_s}_b\) Definition of Number Base

where:

\(\ds \frac {\sum_{j \mathop = 0}^{s - 1} r_j b^j} {b^s}\) \(\le\) \(\ds \frac {\paren {b - 1} \sum_{j \mathop = 0}^{s - 1} b^j} {b^s}\) as $r_j \le b - 1$ for $\forall j$ by hypothesis
\(\ds \) \(=\) \(\ds \frac {\paren {b^s - 1} } {b^s}\) Sum of Geometric Sequence
\(\ds \) \(<\) \(\ds 1\)

In particular:

$\sqbrk {r_m r_{m - 1} \ldots r_{s + 1} r_s}_b \le \dfrac n {b^s} < \sqbrk {r_m r_{m - 1} \ldots r_{s + 1} r_s}_b + 1$

By definition of floor function:

$\floor {\dfrac n {b^s} } = \sqbrk {r_m r_{m - 1} \ldots r_{s + 1} r_s}_b$


Finally:

\(\ds n \mod {b^s}\) \(=\) \(\ds n - b^s \floor {\dfrac n {b^s} }\) Definition of Modulo Operation
\(\ds \) \(=\) \(\ds n - b^s \sqbrk {r_m r_{m - 1} \ldots r_{s + 1} r_s}_b\) as shown above
\(\ds \) \(=\) \(\ds n - b^s \sum_{j \mathop = 0}^{m-s} r_{s+j} b^j\) Definition of Number Base
\(\ds \) \(=\) \(\ds n - \sum_{j \mathop = s}^m r_j b^j\)
\(\ds \) \(=\) \(\ds \sum_{j \mathop = 0}^m r_j b^j - \sum_{j \mathop = s}^m r_j b^j\) by hypothesis
\(\ds \) \(=\) \(\ds \sum_{j \mathop = 0}^{s-1} r_j b^j\)

$\blacksquare$