Rank of Independent Subset Equals Cardinality

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M = \struct {S, \mathscr I}$ be a matroid.

Let $\rho : \powerset S \to \Z$ be the rank function of $M$.

Let $X \in \mathscr I$


Then:

$\map \rho X = \size X$


Proof

\(\ds \map \rho X\) \(=\) \(\ds \max \set {\size Y : Y \subseteq X \land X \in \mathscr I}\) Definition of Rank Function (Matroid)
\(\ds \) \(=\) \(\ds \max \set {\size Y : Y \in \powerset X \land X \in \mathscr I}\) Definition of Power Set of $X$
\(\ds \) \(=\) \(\ds \max \set {\size Y : Y \in \powerset X \cap \mathscr I}\) Definition of Intersection
\(\ds \) \(=\) \(\ds \max \set {\size Y : Y \in \powerset X}\) Matroid axiom $(\text I 2)$
\(\ds \) \(=\) \(\ds \size X\) Cardinality of Proper Subset of Finite Set

$\blacksquare$