# Rank of Set Determined by Members

## Theorem

Let $S$ be a set.

Let $\operatorname{rank} \left({ S }\right)$ denote the rank of $S$.

Then:

$\operatorname{rank} \left({ S }\right) = \bigcap \left\{ x \in \operatorname{On} : \forall y \in S: \operatorname{rank} \left({ y }\right) < x \right\}$

## Proof

This page is beyond the scope of ZFC, and should not be used in anything other than the theory in which it resides.

If you believe that the contents of this page can be reworked to allow ZFC, then you can discuss it at the talk page.

Let:

$T = \bigcap \left\{ x \in \operatorname{On} : \forall y \in S: \operatorname{rank} \left({ y }\right) < x \right\}$

Let $y \in S$.

Then by Membership Rank Inequality:

$\operatorname{rank} \left({ x }\right) < \operatorname{rank} \left({ S }\right)$

Therefore:

$T \subseteq \operatorname{rank} \left({ S }\right)$

Conversely, take any $x \in T$.

By the definition of $T$:

$\forall y \in S: \operatorname{rank} \left({ y }\right) < x$
$\forall y \in S: y \in V \left({ x }\right)$

where $V \left({x}\right)$ denotes the von Neumann hierarchy.

Therefore by the definition of subset:

$S \subseteq V \left({x}\right)$

By the definition of rank.

$\operatorname{rank} \left({ S }\right) \le x$

Therefore:

$\operatorname{rank} \left({ S }\right) = T$

$\blacksquare$