Ratio Test/Warning

From ProofWiki
Jump to navigation Jump to search

Ratio Test: Warning

Let $\ds \sum_{n \mathop = 1}^\infty a_n$ be a series of real numbers in $\R$, or a series of complex numbers in $\C$.

Let the sequence $\sequence {a_n}$ satisfy:

$\ds \lim_{n \mathop \to \infty} \size {\frac {a_{n + 1} } {a_n} } = l$

If $l = 1$, the Ratio Test provides no information on whether $\ds \sum_{n \mathop = 1}^\infty a_n$ converges absolutely, converges conditionally, or diverges.

If $\size {\dfrac {a_{n + 1} } {a_n} } \to \infty$ as $n \to \infty$, then of course $\ds \sum_{n \mathop = 1}^\infty a_n$ diverges.