Rational Multiplication is Associative

From ProofWiki
Jump to navigation Jump to search

Theorem

The operation of multiplication on the set of rational numbers $\Q$ is associative:

$\forall x, y, z \in \Q: x \times \paren {y \times z} = \paren {x \times y} \times z$


Proof

Follows directly from the definition of rational numbers as the quotient field of the integral domain $\struct {\Z, +, \times}$ of integers.

So $\struct {\Q, +, \times}$ is a field, and therefore a priori $\times$ is associative on $\Q$.

$\blacksquare$


Sources