Rational Multiplication is Commutative

From ProofWiki
Jump to navigation Jump to search

Theorem

The operation of multiplication on the set of rational numbers $\Q$ is commutative:

$\forall x, y \in \Q: x \times y = y \times x$


Proof

Follows directly from the definition of rational numbers as the quotient field of the integral domain $\struct {\Z, +, \times}$ of integers.

So $\struct {\Q, +, \times}$ is a field, and therefore a priori $\times$ is commutative on $\Q$.

$\blacksquare$


Sources