Real Area Hyperbolic Cosine is Strictly Increasing

From ProofWiki
Jump to navigation Jump to search

Theorem

The real area hyperbolic cosine function is strictly increasing, that is:

$\forall x, y \ge 1 : x < y \implies \arcosh x < \arcosh y$


Proof

\(\text {(1)}: \quad\) \(\ds x\) \(<\) \(\ds y\) Assumption
\(\ds \leadsto \ \ \) \(\ds x^2\) \(<\) \(\ds y^2\) Real Number Axiom $\R \text O2$: Usual Ordering is Compatible with Multiplication
\(\ds \leadsto \ \ \) \(\ds x^2 - 1\) \(<\) \(\ds y^2 - 1\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \sqrt {x^2 - 1}\) \(<\) \(\ds \sqrt {y^2 - 1}\) Square Root is Strictly Increasing
\(\ds \leadsto \ \ \) \(\ds x + \sqrt {x^2 - 1}\) \(<\) \(\ds y + \sqrt {y^2 - 1}\) $(1) + (2)$
\(\ds \leadsto \ \ \) \(\ds \arcosh x\) \(<\) \(\ds \arcosh y\) Definition of Real Inverse Hyperbolic Cosine

$\blacksquare$