Real Area Hyperbolic Sine of Reciprocal equals Real Area Hyperbolic Cosecant

From ProofWiki
Jump to navigation Jump to search

Theorem

Everywhere that the function is defined:

$\map \arsinh {\dfrac 1 x} = \arcsch x$

where $\arsinh$ and $\arcsch$ denote real area hyperbolic sine and real area hyperbolic cosecant respectively.


Proof

\(\ds \map \arsinh {\dfrac 1 x}\) \(=\) \(\ds y\)
\(\ds \leadstoandfrom \ \ \) \(\ds \frac 1 x\) \(=\) \(\ds \sinh y\) Definition of Real Area Hyperbolic Sine
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds \csch y\) Definition 2 of Hyperbolic Cosecant
\(\ds \leadstoandfrom \ \ \) \(\ds \arcsch x\) \(=\) \(\ds y\) Definition of Real Area Hyperbolic Cosecant

$\blacksquare$


Sources