# Real Convergent Sequence is Cauchy Sequence

## Theorem

Every convergent real sequence in $\R$ is a Cauchy sequence.

## Proof 1

Let $\sequence {x_n}$ be a sequence in $\R$ that converges to the limit $l \in \R$.

Let $\epsilon > 0$.

Then also $\dfrac \epsilon 2 > 0$.

Because $\sequence {x_n}$ converges to $l$, we have:

$\exists N: \forall n > N: \size {x_n - l} < \dfrac \epsilon 2$

So if $m > N$ and $n > N$, then:

 $\displaystyle \size {x_n - x_m}$ $=$ $\displaystyle \size {x_n - l + l - x_m}$ $\displaystyle$ $\le$ $\displaystyle \size {x_n - l} + \size {l - x_m}$ Triangle Inequality $\displaystyle$ $<$ $\displaystyle \frac \epsilon 2 + \frac \epsilon 2$ by choice of $N$ $\displaystyle$ $=$ $\displaystyle \epsilon$

Thus $\sequence {x_n}$ is a Cauchy sequence.

$\blacksquare$

## Proof 2

From Real Number Line is Complete Metric Space, $\R$ under the usual metric is a metric space.

The result then follows as a special case of Convergent Sequence in Metric Space is Cauchy Sequence.

$\blacksquare$