Real Function is Strictly Concave iff Derivative is Strictly Decreasing
Theorem
Let $f$ be a real function which is differentiable on the open interval $\openint a b$.
Then $f$ is strictly concave on $\openint a b$ if and only if its derivative $f'$ is strictly decreasing on $\openint a b$.
Proof
Necessary Condition
Let $f$ be strictly concave on $\openint a b$.
Let $r, s \in \openint a b$ be arbitrarily selected such that $r < s$.
We are to show that:
- $\map {f'} r > \map {f'} s$
Let $x_1, x_2, x_3 \in \openint a b$ be chosen such that:
- $r < x_1 < x_2 < x_3 < s$
By the definition of strictly concave:
- $(1): \quad \dfrac {\map f {x_1} - \map f r} {x_1 - r} > \dfrac {\map f {x_2} - \map f {x_1} } {x_2 - x_1} > \dfrac {\map f {x_3} - \map f {x_2} } {x_3 - x_2} > \dfrac {\map f s - \map f {x_3} } {s - x_3}$
and:
- $(2): \quad \dfrac {\map f {x_2} - \map f r} {x_2 - r} > \dfrac {\map f s - \map f {x_2} } {s - x_2}$
Let $x_1 \to r^+$.
Then:
\(\ds \dfrac {\map f {x_1} - \map f r} {x_1 - r}\) | \(>\) | \(\ds \dfrac {\map f {x_2} - \map f {x_1} } {x_2 - x_1}\) | from $(1)$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \lim_{x_1 \mathop \to r^+} \dfrac {\map f {x_1} - \map f r} {x_1 - r}\) | \(\ge\) | \(\ds \lim_{x_1 \mathop \to r^+} \dfrac {\map f {x_2} - \map f {x_1} } {x_2 - x_1}\) | Limits Preserve Inequalities | ||||||||||
\(\text {(3)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \map {f'} r\) | \(\ge\) | \(\ds \dfrac {\map f {x_2} - \map f r} {x_2 - r}\) | Definition of Derivative of Real Function at Point |
Similarly, let $x_3 \to s^-$.
We have:
\(\ds \dfrac {\map f {x_3} - \map f {x_2} } {x_3 - x_2}\) | \(>\) | \(\ds \dfrac {\map f s - \map f {x_3} } {s - x_3}\) | from $(1)$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \lim_{x_3 \mathop \to s^-} \dfrac {\map f {x_3} - \map f {x_2} } {x_3 - x_2}\) | \(\ge\) | \(\ds \lim_{x_3 \mathop \to s^-} \dfrac {\map f s - \map f {x_3} } {s - x_3}\) | Limits Preserve Inequalities | ||||||||||
\(\text {(4)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \dfrac {\map f s - \map f {x_2} } {s - x_2}\) | \(\ge\) | \(\ds \map {f'} s\) | Definition of Derivative of Real Function at Point |
Thus we have:
\(\ds \map {f'} r\) | \(\ge\) | \(\ds \dfrac {\map f {x_2} - \map f r} {x_2 - r}\) | from $(3)$ | |||||||||||
\(\ds \) | \(>\) | \(\ds \dfrac {\map f s - \map f {x_2} } {s - x_2}\) | from $(2)$ | |||||||||||
\(\ds \) | \(\ge\) | \(\ds \map {f'} s\) | from $(4)$ |
Thus:
- $\map {f'} r > \map {f'} s$
Hence $f'$ is strictly decreasing on $\openint a b$.
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
$\Box$
Sufficient Condition
Let $f'$ be strictly decreasing on $\openint a b$.
Let $x_1, x_2, x_3 \in \openint a b: x_1 < x_2 < x_3$.
By the Mean Value Theorem:
- $\exists \xi: \dfrac {\map f {x_2} - \map f {x_1} } {x_2 - x_1} = \map {f'} \xi$
- $\exists \eta: \dfrac {\map f {x_3} - \map f {x_2} } {x_3 - x_2} = \map {f'} \eta$
where $x_1 < \xi < x_2 < \eta < x_3$.
Since $f'$ is strictly decreasing:
- $\map {f'} \xi > \map {f'} \eta$
Thus:
- $\dfrac {\map f {x_2} - \map f {x_1} } {x_2 - x_1} > \dfrac {\map f {x_3} - \map f {x_2} } {x_3 - x_2}$
Hence $f$ is strictly concave by definition.
$\blacksquare$
Also see
- Real Function is Convex iff Derivative is Increasing
- Real Function is Strictly Convex iff Derivative is Strictly Increasing
Sources
- Mees de Vries (https://math.stackexchange.com/users/75429/mees-de-vries), "Real Function is Strictly Concave iff Derivative is Strictly Decreasing" - doubt about a step in the proof, URL, URL (version: 2020-02-07): https://math.stackexchange.com/q/3537748