Real Interval is Bounded in Real Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\R$ be the real number line considered as an Euclidean space.

Let $a, b \in \R$.

Let $\II$ be one of the following real intervals:

\(\ds \openint a b\) \(:=\) \(\ds \set {x \in \R: a < x < b}\) Open Real Interval
\(\ds \hointr a b\) \(:=\) \(\ds \set {x \in \R: a \le x < b}\) Half-Open (to the right) Real Interval
\(\ds \hointl a b\) \(:=\) \(\ds \set {x \in \R: a < x \le b}\) Half-Open (to the left) Real Interval
\(\ds \closedint a b\) \(:=\) \(\ds \set {x \in \R: a \le x \le b}\) Closed Real Interval

where $b \ge a$.


Then $\II$ is bounded in $\R$.


Proof

Consider the open $\epsilon$-ball $\map {B_\epsilon} a$ where $\epsilon = b + 1 - a$.

As $b \ge a$ we have that $b + 1 > a$ and so $\epsilon > 0$.


Let $x \in \II$.

Then, whatever type of real interval $\II$ actually is, $z \ge a$ and $x \le b$.

As $\epsilon > 0$ it follows that $x > a - \epsilon$.

Also:

\(\ds x\) \(\le\) \(\ds b\)
\(\ds \) \(=\) \(\ds a + b - a\)
\(\ds \) \(<\) \(\ds a + \paren {b + 1 - a}\)
\(\ds \) \(=\) \(\ds a + \epsilon\)


That is:

$a - \epsilon < x < a + \epsilon$

and so:

$x \in \map {B_\epsilon} a$

The result follows by definition of bounded space.

$\blacksquare$


Sources