Real Number Inequalities can be Added
Jump to navigation
Jump to search
Theorem
Let $a, b, c, d \in \R$ such that $a > b$ and $c > d$.
Then:
- $a + c > b + d$
Proof
\(\ds a\) | \(>\) | \(\ds b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a + c\) | \(>\) | \(\ds b + c\) | Real Number Ordering is Compatible with Addition |
\(\ds c\) | \(>\) | \(\ds d\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds b + c\) | \(>\) | \(\ds b + d\) | Real Number Ordering is Compatible with Addition |
Finally:
\(\ds a + c\) | \(>\) | \(\ds b + c\) | ||||||||||||
\(\ds b + c\) | \(>\) | \(\ds b + d\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a + c\) | \(>\) | \(\ds b + d\) | Trichotomy Law for Real Numbers |
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 1$: Real Numbers: Exercise $\S 1.8 \ (3)$
- 2000: James R. Munkres: Topology (2nd ed.) ... (previous) ... (next): $1$: Set Theory and Logic: $\S 4$: The Integers and the Real Numbers: Exercise $2 \ \text{(a)}$