Real Sequence (1 + x over n)^n is Convergent
Theorem
The sequence $\sequence {s_n}$ defined as:
- $s_n = \paren {1 + \dfrac x n}^n$
is convergent.
Proof
From Cauchy's Mean Theorem:
- $(1): \quad \ds \paren {\prod_{k \mathop = 1}^n a_k}^{1/n} \le \frac 1 n \paren {\sum_{k \mathop = 1}^n a_k}$
for $r_1, r_2, \ldots, r_n$.
Setting:
- $a_1 = a_2 = \ldots = a_{n - 1} := 1 + \dfrac x {n - 1}$
and:
- $a_n = 1$
Substituting for $a_1, a_2, \ldots, a_n$ into $(1)$ gives:
\(\ds \paren {1 + \dfrac x {n - 1} }^{\frac {n - 1} n}\) | \(\le\) | \(\ds \dfrac {\paren {n - 1} \paren {1 + \frac x {n - 1} } + 1} n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \dfrac x n\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {1 + \dfrac x {n - 1} }^{n - 1}\) | \(\le\) | \(\ds \paren {1 + \dfrac x n}^n\) |
The above is valid only if $a_1, a_2, \ldots, a_n$ are positive.
Hence we have shown that $\sequence {s_n}$ is increasing when:
- $1 + \dfrac x {n - 1} \ge 0$
that is, when:
- $n \ge 1 - x$
From Equivalence of Definitions of Real Exponential Function: Limit of Sequence implies Power Series Expansion, we have:
- $(2): \quad \paren {1 + \dfrac x n}^n \le 1 + \size x + \dfrac {\size x^2} {2!} + \dotsb + \dfrac {\size x^n} {n!}$
Since there exists $N$ such that:
- $\forall n > N: \dfrac {\size x^n} {n!} \le \paren {\dfrac 1 2}^n$
it follows from $(2)$ that:
\(\ds \paren {1 + \dfrac x n}^n\) | \(\le\) | \(\ds 1 + \size x + \dfrac {\size x^2} {2!} + \dotsb + \dfrac {\size x^N} {N!} + \paren {\dfrac 1 2}^{N + 1} + \dotsb + \paren {\dfrac 1 2}^n\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds C + \dfrac {1 + \paren {\frac 1 2}^{n + 1} } {1 + \frac 1 2}\) | where $C$ is some constant | |||||||||||
\(\ds \) | \(<\) | \(\ds C + 2\) |
Hence we have that $\sequence {s_n}$ is strictly increasing and bounded above.
So by the Monotone Convergence Theorem (Real Analysis), $\sequence {s_n}$ is convergent.
As $1 + \dfrac x n$ is positive when $n$ is large enough, it follows that the limit of $\sequence {s_n}$ is positive.
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 5$: Subsequences: Exercise $\S 5.7 \ (5)$