Reciprocals whose Decimal Expansion contain Equal Numbers of Digits from 0 to 9
Jump to navigation
Jump to search
Theorem
The following positive integers $p$ have reciprocals whose decimal expansions:
- $(1): \quad$ have the maximum period, that is: $p - 1$
- $(2): \quad$ have an equal number, $\dfrac {p - 1} {10}$, of each of the digits from $0$ to $9$:
- $61$, $131$, $\ldots$
Proof
From Reciprocal of $61$:
- $\dfrac 1 {61} = 0 \cdotp \dot 01639 \, 34426 \, 22950 \, 81967 \, 21311 \, 47540 \, 98360 \, 65573 \, 77049 \, 18032 \, 78688 \, 5245 \dot 9$
From Reciprocal of $131$:
- $\dfrac 1 {131} = 0 \cdotp \dot 00763 \, 35877 \, 86259 \, 54198 \, 47328 \, 24427 \, 48091 \, 60305 \, 34351 \, 14503 \, 81679 \, 38931 \, 29770 \, 99236 \, 64122 \, 13740 \, 45801 \, 52671 \, 75572 \, 51908 \, 39694 \, 65648 \, 85496 \, 18320 \, 61068 \, 7022 \dot 9$
Sources
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $61$