# Rectangular Formula for Definite Integrals

Jump to navigation
Jump to search

## Theorem

Let $f$ be a real function which is integrable on the closed interval $\closedint a b$.

Let $P = \set {x_0, x_1, x_2, \ldots, x_{n - 1}, x_n}$ form a normal subdivision of $\closedint a b$:

- $\forall r \in \set {1, 2, \ldots, n}: x_r - x_{r - 1} = \dfrac {b - a} n$

Then the definite integral of $f$ with respect to $x$ from $a$ to $b$ can be approximated as:

- $\displaystyle \int_a^b \map f x \rd x \approx \sum_{r \mathop = 0}^{n - 1} h \map f {x_r}$

where $h = \dfrac {b - a} n$.

## Proof

## Sources

- 1968: Murray R. Spiegel:
*Mathematical Handbook of Formulas and Tables*... (previous) ... (next): $\S 15$: Approximate Formulas for Definite Integrals: $15.15$