Recurrence Relation for Fibonomial Coefficients

From ProofWiki
Jump to navigation Jump to search

Theorem

$\dbinom n k_\FF = F_{k - 1} \dbinom {n - 1} k_\FF + F_{n - k + 1} \dbinom {n - 1} {k - 1}_\FF$

where:

$\dbinom n k_\FF$ denotes a Fibonomial coefficient
$F_{k - 1}$ etc. denote Fibonacci numbers.


Proof

\(\ds \) \(\) \(\ds F_{k - 1} \dbinom {n - 1} k_\FF + F_{n - k + 1} \dbinom {n - 1} {k - 1}_\FF\)
\(\ds \) \(=\) \(\ds F_{k - 1} \dfrac {F_{n - 1} F_{n - 2} \cdots F_{n - k + 1} F_{n - k} } {F_k F_{k - 1} F_{k - 2} F_{k - 3} \cdots F_1} + F_{n - k + 1} \dfrac {F_{n - 1} F_{n - 2} \cdots F_{n - k + 1} } {F_{k - 1} F_{k - 2} F_{k - 3} \cdots F_1}\) Definition of Fibonomial Coefficient
\(\ds \) \(=\) \(\ds \dfrac {F_{k - 1} F_{n - 1} F_{n - 2} \cdots F_{n - k + 1} F_{n - k} + F_{n - k + 1} F_k F_{n - k + 1} F_{n - 1} F_{n - 2} \cdots F_{n - k + 1} } {F_k F_{k - 1} F_{k - 2} F_{k - 3} \cdots F_1}\)
\(\ds \) \(=\) \(\ds F_{n - 1} F_{n - 2} \cdots F_{n - k + 1} \dfrac {F_{k - 1} F_{n - k} + F_{n - k + 1} F_k} {F_k F_{k - 1} F_{k - 2} F_{k - 3} \cdots F_1}\)
\(\ds \) \(=\) \(\ds F_{n - 1} F_{n - 2} \cdots F_{n - k + 1} \dfrac {F_{\left({n - k}\right) + k} } {F_k F_{k - 1} F_{k - 2} F_{k - 3} \cdots F_1}\) Honsberger's Identity: $F_{m + n} = F_{m - 1} F_n + F_m F_{n + 1}$
\(\ds \) \(=\) \(\ds \dfrac {F_n F_{n - 1} F_{n - 2} \cdots F_{n - k + 1} } {F_k F_{k - 1} F_{k - 2} F_{k - 3} \cdots F_1}\)
\(\ds \) \(=\) \(\ds \dbinom n k_\FF\) Definition of Fibonomial Coefficient

$\blacksquare$


Sources