Reduction Formula for Integral of Power of Cosine
Jump to navigation
Jump to search
Theorem
Let $n \in \Z_{> 0}$ be a (strictly) positive integer.
Then:
- $\ds \int \cos^n x \rd x = \dfrac {\cos^{n - 1} x \sin x} n + \dfrac {n - 1} n \int \cos^{n - 2} x \rd x$
is a reduction formula for $\ds \int \cos^n x \rd x$.
Corollary
- $\ds \int \cos^n a x \rd x = \dfrac {\cos^{n - 1} a x \sin a x} {a n} + \dfrac {n - 1} n \int \cos^{n - 2} a x \rd x$
Proof
With a view to expressing the problem in the form:
- $\ds \int u \frac {\rd v} {\rd x} \rd x = u v - \int v \frac {rd u} {\rd x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \cos^{n - 1} x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\rd u} {\rd x}\) | \(=\) | \(\ds -\paren {n - 1} \cos ^{n - 2} x \sin x\) | Chain Rule for Derivatives, Derivative of Cosine Function, Derivative of Power |
and let:
\(\ds \frac {\rd v} {\rd x}\) | \(=\) | \(\ds \cos x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \sin x\) | Primitive of Cosine Function |
Then:
\(\ds \int \cos^n x \rd x\) | \(=\) | \(\ds \int \cos^{n - 1} x \cos x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cos^{n - 1} x \sin x - \int \sin x \paren {-\paren {n - 1} \cos^{n - 2} x \sin x} \rd x\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos^{n - 1} x \sin x + \int \paren {n - 1} \cos^{n - 2} x \sin^2 x \rd x\) | rearranging | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos^{n - 1} x \sin x + \int \paren {n - 1} \cos^{n - 2} x \paren {1 - \cos^2 x} \rd x\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos^{n - 1} x \sin x + \paren {n - 1} \int \cos^{n - 2} x \rd x - \int \paren {n - 1} \cos^n x \rd x\) | Linear Combination of Primitives | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds n \int \cos^n x \rd x\) | \(=\) | \(\ds \cos^{n - 1} x \sin x + \paren {n - 1} \int \cos^{n - 2} x \rd x\) | rearranging | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \cos^n x \rd x\) | \(=\) | \(\ds \frac {\cos^{n - 1} x \sin x} n + \frac {n - 1} n \int \cos^{n - 2} x \rd x\) | dividing both sides by $n$ |
$\blacksquare$