Reduction Formula for Integral of Power of Sine/Proof 1
Jump to navigation
Jump to search
Theorem
Let $n \in \Z_{> 0}$ be a (strictly) positive integer.
Then:
- $\ds \int \sin^n x \rd x = \dfrac {n - 1} n \int \sin^{n - 2} x \rd x - \dfrac {\sin^{n - 1} x \cos x} n$
is a reduction formula for $\ds \int \sin^n x \rd x$.
Proof
Let $n \ge 2$.
Let:
- $\ds I_n := \int \sin^n x \rd x$
Then:
\(\ds I_n\) | \(=\) | \(\ds \int \sin^n x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \sin^{n - 1} x \sin x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \sin^{n - 1} x \map \rd {-\cos x}\) | Derivative of Cosine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds - \sin^{n - 1} x \cos x - \int \paren {-\cos x} \map \rd {\sin^{n - 1} x}\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds - \sin^{n - 1} x \cos x - \int \paren {-\cos x} \paren {n - 1} \sin^{n - 2} x \cos x \rd x\) | Derivative of Power and Chain Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds - \sin^{n - 1} x \cos x + \paren {n - 1} \int \sin^{n - 2} x \cos^2 x \rd x\) | Linear Combination of Primitives and rearranging | |||||||||||
\(\ds \) | \(=\) | \(\ds - \sin^{n - 1} x \cos x + \paren {n - 1} \int \sin^{n - 2} x \paren {1 - \sin^2 x} \rd x\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds - \sin^{n - 1} x \cos x + \paren {n - 1} \int \sin^{n - 2} x \rd x - \paren {n - 1} \int \sin^n x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds - \sin^{n - 1} x \cos x + \paren {n - 1} I_{n - 2} - \paren {n - 1} I_n\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds n I_n\) | \(=\) | \(\ds - \sin^{n - 1} x \cos x + \paren {n - 1} I_{n - 2}\) | adding $\paren {n - 1} I_n$ to both sides | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds I_n\) | \(=\) | \(\ds \dfrac {n - 1} n I_{n - 2} - \dfrac {\sin^{n - 1} x \cos x} n\) | dividing by $n$ and rearranging |
thus demonstrating the identity for all $n \ge 2$.
When $n = 1$ this degenerates to:
\(\ds \int \sin x \rd x\) | \(=\) | \(\ds \dfrac 0 1 \int \frac 1 {\sin x} \rd x - \dfrac {\sin^0 x \cos x} 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0 - 1 \cdot \cos x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\cos x\) |
From Primitive of Sine Function this shows that the identity still holds for $n = 1$.
$\blacksquare$
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |