Reduction Formula for Integral of Power of Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

For all $n \in \Z_{> 1}$:

$\ds \int \map {\tan^n} x \rd x = \frac {\map {\tan^{n - 1} } x} {n - 1} - \int \map {\tan^{n - 2} } x \rd x$


Proof

\(\ds \int \map {\tan^n} x \rd x\) \(=\) \(\ds \int \map {\tan^{n - 2} } x \map {\tan^2} x \rd x\)
\(\ds \) \(=\) \(\ds \int \map {\tan^{n - 2} } x \paren {\map {\sec^2} x - 1} \rd x\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \int \map {\tan^{n - 2} } x \map {\sec^2} x \rd x - \int \map {\tan^{n - 2} } x \rd x\) Linear Combination of Primitives


Let:

\(\ds t\) \(=\) \(\ds \map \tan x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d t} {\d x}\) \(=\) \(\ds \map {\sec^2} x\) Derivative of Tangent Function


Then:

\(\ds \int \map {\tan^{n - 2} } x \map {\sec^2} x \rd x - \int \map {\tan^{n - 2} } x \rd x\) \(=\) \(\ds \int t^{n - 2} \rd t - \int \map {\tan^{n - 2} } x \rd x\) Integration by Substitution
\(\ds \) \(=\) \(\ds \frac {t^{n - 1} } {n - 1} - \int \map {\tan^{n - 2} } x \rd x\) Primitive of Power
\(\ds \) \(=\) \(\ds \frac {\map {\tan^{n - 1} } x} {n - 1} - \int \map {\tan^{n - 2} } x \rd x\) substituting back $t \to \map \tan x$

$\blacksquare$


Also see