Reduction Formula for Primitive of Power of a x + b by Power of p x + q/Decrement of Power

From ProofWiki
Jump to navigation Jump to search



Theorem

$\ds \int \paren {a x + b}^m \paren {p x + q}^n \rd x = \frac {\paren {a x + b}^{m + 1} \paren {p x + q}^n} {\paren {m + n + 1} a} - \frac {n \paren {b p - a q} } {\paren {m + n + 1} a} \int \paren {a x + b}^m \paren {p x + q}^{n - 1} \rd x$


Proof

Aiming for an expression in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

in order to use the technique of Integration by Parts, let:

\(\ds v\) \(=\) \(\ds \paren {a x + b}^s\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d v} {\d x}\) \(=\) \(\ds a s \paren {a x + b}^{s - 1}\) Derivative of Power and Derivative of Function of Constant Multiple: Corollary


In order to make $u \dfrac {\d v} {\d x}$ equal to the integrand, let:

\(\ds u\) \(=\) \(\ds \frac {\paren {a x + b}^{m - s + 1} } {a s} \paren {p x + q}^n\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac {a \paren {m - s + 1} \paren {a x + b}^{m - s} \paren {p x + q}^n + p n \paren {a x + b}^{m - s + 1} \paren {p x + q}^{n - 1} } {a s}\) Product Rule for Derivatives and above
\(\ds \) \(=\) \(\ds \frac {\paren {a x + b}^{m - s} \paren {p x + q}^{n - 1} } {a s} \paren {a \paren {m - s + 1} \paren {p x + q} + p n \paren {a x + b} }\) extracting common factor
\(\ds \) \(=\) \(\ds \frac {\paren {a x + b}^{m - s} \paren {p x + q}^{n - 1} } {a s} \paren {a p x \paren {m - s + 1 + n} + a q \paren {m - s + 1} + p b n}\) separating out terms in $x$


Select $s$ such that $m - s + n + 1 = 0$, and so $s = m + n + 1$:

\(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac {\paren {a x + b}^{m - s} \paren {p x + q}^{n - 1} } {a \paren {m + n + 1} } \paren {a q \paren {m - \paren {m + n + 1} + 1} + p b n}\) term in $x$ vanishes
\(\ds \) \(=\) \(\ds \frac {\paren {a x + b}^{m - s} \paren {p x + q}^{n - 1} } {a \paren {m + n + 1} } \paren {n \paren {b p - a q} }\) simplifying

Other instances of $s$ are left as they are, anticipating that they will cancel out later.


Thus:

\(\ds \) \(\) \(\ds \int \paren {a x + b}^m \paren {p x + q}^n \rd x\)
\(\ds \) \(=\) \(\ds \int \frac {\paren {a x + b}^{m - s + 1} } {a s} \paren {p x + q}^n a s \paren {a x + b}^{s - 1} \rd x\) in the form $\ds \int u \frac {\d v} {\d x} \rd x$
\(\ds \) \(=\) \(\ds \frac {\paren {a x + b}^{m - s + 1} } {a s} \paren {p x + q}^n \paren {a x + b}^s\) in the form $\ds u v - \int v \frac {\d u} {\d x} \rd x$
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \int \paren {a x + b}^s \frac {\paren {a x + b}^{m - s} \paren {p x + q}^{n - 1} } {a \paren {m + n + 1} } \paren {n \paren {p b - a q} } \rd x\)
\(\ds \) \(=\) \(\ds \frac {\paren {a x + b}^{m + 1} \paren {p x + q}^n} {\paren {m + n + 1} a} - \frac {n \paren {b p - a q} } {\paren {m + n + 1} a} \int \paren {a x + b}^m \paren {p x + q}^{n - 1} \rd x\) Primitive of Constant Multiple of Function

$\blacksquare$


Also defined as

This can also be reported as:

$\ds \int \paren {a x + b}^m \paren {p x + q}^n \rd x = \frac {\paren {a x + b}^m \paren {p x + q}^{n + 1} } {\paren {m + n + 1} p} + \frac {m \paren {b p - a q} } {\paren {m + n + 1} p} \int \paren {a x + b}^{m - 1} \paren {p x + q}^n \rd x$

by interchanging the roles of $m$ and $n$.