Reduction Formula for Primitive of Power of x by Power of a x + b

From ProofWiki
Jump to navigation Jump to search

Theorem

Decrement of Power of $a x + b$

$\displaystyle \int x^m \left({a x + b}\right)^n \rd x = \frac {x^{m+1} \left({a x + b}\right)^n} {m + n + 1} + \frac {n b} {m + n + 1} \int x^m \left({a x + b}\right)^{n - 1} \rd x$


Decrement of Power of $x$

$\displaystyle \int x^m \left({a x + b}\right)^n \rd x = \frac {x^m \left({a x + b}\right)^{n + 1} } {\left({m + n + 1}\right) a} - \frac {m b} {\left({m + n + 1}\right) a} \int x^{m - 1} \left({a x + b}\right)^n \rd x$


Increment of Power of $a x + b$

$\displaystyle \int x^m \paren {a x + b}^n \rd x = \frac {-x^{m + 1} \paren {a x + b}^{n + 1} } {\paren {n + 1} b} + \frac {m + n + 2} {\paren {n + 1} b} \int x^m \paren {a x + b}^{n + 1} \rd x$


Increment of Power of $x$

$\displaystyle \int x^m \left({a x + b}\right)^n \rd x = \frac {x^{m+1} \left({a x + b}\right)^{n + 1} } {\left({m + 1}\right) b} - \frac {\left({m + n + 2}\right) a} {\left({m + 1}\right) b} \int x^{m + 1} \left({a x + b}\right)^n \rd x$