Relation between Adjacent Best Rational Approximations to Root 2
Jump to navigation
Jump to search
Theorem
Consider the Sequence of Best Rational Approximations to Square Root of 2:
- $\sequence S := \dfrac 1 1, \dfrac 3 2, \dfrac 7 5, \dfrac {17} {12}, \dfrac {41} {29}, \dfrac {99} {70}, \dfrac {239} {169}, \dfrac {577} {408}, \ldots$
Let $\dfrac {p_n} {q_n}$ and $\dfrac {p_{n + 1} } {q_{n + 1} }$ be adjacent terms of $\sequence S$.
Then:
- $\dfrac {p_{n + 1} } {q_{n + 1} } = \dfrac {p_n + 2 q_n} {p_n + q_n}$
Proof
The proof proceeds by induction.
For all $n \in \Z_{> 0}$, let $\map P n$ be the proposition:
- $\dfrac {p_{n + 1} } {q_{n + 1} } = \dfrac {p_n + 2 q_n} {p_n + q_n}$
Basis for the Induction
$\map P 1$ is the case:
\(\ds \dfrac {p_2} {q_2}\) | \(=\) | \(\ds \dfrac 3 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {1 + 2 \times 1} {1 + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {p_1 + 2 \times q_1} {p_1 + q_1}\) |
Thus $\map P 1$ is seen to hold.
This is the basis for the induction.
Induction Hypothesis
Now it needs to be shown that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.
So this is the induction hypothesis:
- $\dfrac {p_{k + 1} } {q_{k + 1} } = \dfrac {p_k + 2 q_k} {p_k + q_k}$
from which it is to be shown that:
- $\dfrac {p_{k + 2} } {q_{k + 2} } = \dfrac {p_{k + 1} + 2 q_{k + 1} } {p_{k + 1} + q_{k + 1} }$
Induction Step
This is the induction step:
\(\ds \dfrac {p_{k + 2} } {q_{k + 2} }\) | \(=\) | \(\ds \dfrac {2 p_{k + 1} + p_k} {2 q_{k + 1} + q_k}\) | Definition of Numerators and Denominators of Continued Fraction | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {2 \paren {p_k + 2 q_k} + p_k} {2 \paren {p_k + q_k} + q_k}\) | Induction Hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {3 p_k + 4 q_k} {2 p_k + 3 q_k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {p_k + 2 q_k} + 2 \paren {p_k + q_k} } {\paren {p_k + q_k} + \paren {p_k + 2 q_k} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {p_{k + 1} + 2 q_{k + 1} } {p_{k + 1} + q_{k + 1} }\) | Induction Hypothesis |
So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\forall n \in \Z_{>0}: \dfrac {p_{n + 1} } {q_{n + 1} } = \dfrac {p_n + 2 q_n} {p_n + q_n}$
$\blacksquare$
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $1 \cdotp 41421 \, 35623 \, 73095 \, 04880 \, 16887 \, 24209 \, 69807 \, 85697 \ldots$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $1 \cdotp 41421 \, 35623 \, 73095 \, 04880 \, 16887 \, 24209 \, 69807 \, 85697 \ldots$