Relation between Equations for Hypocycloid and Epicycloid

From ProofWiki
Jump to navigation Jump to search

Theorem

Consider the hypocycloid defined by the equations:

$x = \paren {a - b} \cos \theta + b \map \cos {\paren {\dfrac {a - b} b} \theta}$
$y = \paren {a - b} \sin \theta - b \map \sin {\paren {\dfrac {a - b} b} \theta}$

By replacing $b$ with $-b$, this converts to the equations which define an epicycloid:

$x = \paren {a + b} \cos \theta - b \map \cos {\paren {\dfrac {a + b} b} \theta}$
$y = \paren {a + b} \sin \theta - b \map \sin {\paren {\dfrac {a + b} b} \theta}$


Proof

\(\ds x\) \(=\) \(\ds \paren {a - \paren {-b} } \cos \theta + \paren {-b} \map \cos {\paren {\dfrac {a - \paren {-b} } {\paren {-b} } } \theta}\) putting $-b$ for $b$
\(\ds \) \(=\) \(\ds \paren {a + b} \cos \theta - b \map \cos {-\paren {\dfrac {a + b} b} \theta}\)
\(\ds \) \(=\) \(\ds \paren {a + b} \cos \theta - b \map \cos {\paren {\dfrac {a + b} b} \theta}\) Cosine Function is Even


\(\ds y\) \(=\) \(\ds \paren {a - \paren {-b} } \sin \theta - \paren {-b} \map \sin {\paren {\dfrac {a - \paren {-b} } {\paren {-b} } } \theta}\) putting $-b$ for $b$
\(\ds \) \(=\) \(\ds \paren {a + b} \sin \theta + b \map \sin {-\paren {\dfrac {a + b} b} \theta}\)
\(\ds \) \(=\) \(\ds \paren {a + b} \sin \theta - b \map \sin {\paren {\dfrac {a + b} b} \theta}\) Sine Function is Odd

$\blacksquare$


Sources