Relation between P-Product Metric and Chebyshev Distance on Real Vector Space
Jump to navigation
Jump to search
Theorem
For $n \in \N$, let $\R^n$ be a Euclidean space.
Let $p \in \R_{\ge 1}$.
Let $d_p$ be the $p$-product metric on $\R^n$.
Let $d_\infty$ be the Chebyshev distance on $\R^n$.
Then
- $\forall x, y \in \R^n: \map {d_\infty} {x, y} \le \map {d_p} {x, y} \le n^{1/p} \map {d_\infty} {x, y}$
Proof
By definition of the Chebyshev distance on $\R^n$, we have:
- $\ds \map {d_\infty} {x, y} = \max_{i \mathop = 1}^n \size {x_i - y_i}$
where $x = \tuple {x_1, x_2, \ldots, x_n}$ and $y = \tuple {y_1, y_2, \ldots, y_n}$.
Let $j$ be chosen so that:
- $\ds \size {x_j - y_j} = \max_{i \mathop = 1}^n \size {x_i - y_i}$
Then:
\(\ds \map {d_\infty} {x, y}\) | \(=\) | \(\ds \paren {\size {x_j - y_j}^p}^{1/p}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \paren {\sum_{i \mathop = 1}^n \size {x_i - y_i}^p}^{1/p}\) | Power of Maximum is not Greater than Sum of Powers | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {d_p} {x, y}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \paren {n \size {x_j - y_j}^p}^{1/p}\) | Sum of $r$ Powers is not Greater than $r$ times Power of Maximum | |||||||||||
\(\ds \) | \(=\) | \(\ds n^{1/p} \size {d_\infty} {x, y}\) |
$\blacksquare$
Sources
- 1975: Bert Mendelson: Introduction to Topology (3rd ed.) ... (previous) ... (next): Chapter $2$: Metric Spaces: $\S 2$: Metric Spaces: Exercise $3$