# Relation is Antisymmetric iff Intersection with Inverse is Coreflexive

## Theorem

Let $\RR$ be a relation on $S$.

Then:

$\RR$ is antisymmetric
$\RR \cap \RR^{-1}$ is coreflexive

where $\RR^{-1}$ is the inverse of $\RR$.

## Proof

### Necessary Condition

Let $\RR$ be an antisymmetric relation.

Let $\tuple {a, b} \in \RR \cap \RR^{-1}$.

That means:

$\tuple {a, b} \in \RR$

and

$\tuple {a, b} \in \RR^{-1}$

which means, by definition of inverse relation:

$\tuple {b, a} \in \RR$

But as $\RR$ is antisymmetric, that means $a = b$.

Thus:

$\tuple {a, b} = \tuple {a, a}$

and so:

$\tuple {a, b} \in \Delta_S$

where $\Delta_S$ is the diagonal relation.

Thus from the definition of subset:

$\RR \cap \RR^{-1} \subseteq \Delta_S$

Hence, by definition, $\RR$ is coreflexive.

$\Box$

### Sufficient Condition

Let $\RR \cap \RR^{-1}$ be coreflexive.

Hence by definition of coreflexive:

$\RR \cap \RR^{-1} \subseteq \Delta_S$

Let $\tuple {a, b} \in \RR$ and $\tuple {b, a} \in \RR$.

That is, by definition of inverse relation:

$\tuple {a, b} \in \RR$

and

$\tuple {a, b} \in \RR^{-1}$

That is:

$\tuple {a, b} \in \RR \cap \RR^{-1}$

But as $\RR \cap \RR^{-1} \subseteq \Delta_S$ it follows that $a = b$.

So by definition $\RR$ is antisymmetric.

$\blacksquare$