Relation is Connected iff Union with Inverse and Diagonal is Trivial Relation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR$ be a relation on $S$.


Then $\RR$ is a connected relation if and only if:

$\RR \cup \RR^{-1} \cup \Delta_S = S \times S$

where $\RR^{-1}$ is the inverse of $\RR$ and $\Delta_S$ is the diagonal relation.


Proof

Necessary Condition

Let $\RR$ be a connected relation.

By definition of relation:

$\RR \subseteq S \times S$
$\RR^{-1} \subseteq S \times S$
$\Delta_S \subseteq S \times S$

So from Union is Smallest Superset (and indeed, trivially):

$\RR \cup \RR^{-1} \cup \Delta_S \subseteq S \times S$


Let $\tuple {a, b} \in S \times S$.

Suppose $a = b$.

Then $\tuple {a, b} \in \Delta_S$ by definition of the diagonal relation.

Then by Set is Subset of Union:

$\tuple {a, b} \in \RR \cup \RR^{-1} \cup \Delta_S$


Suppose otherwise, that is, that $a \ne b$.

As $\RR$ is connected, either:

$\tuple {a, b} \in \RR$

or:

$\tuple {b, a} \in \RR$


From the definition of inverse relation, either:

$\tuple {a, b} \in \RR$

or:

$\tuple {a, b} \in \RR^{-1}$

That is:

$\tuple {a, b} \in R \cup \RR^{-1}$

Again by Set is Subset of Union:

$\tuple {a, b} \in \RR \cup \RR^{-1} \cup \Delta_S$


So, by definition of subset:

$S \times S \subseteq \RR \cup \RR^{-1} \cup \Delta_S$


Hence, by definition of set equality:

$\RR \cup \RR^{-1} \cup \Delta_S = S \times S$

$\Box$


Sufficient Condition

Let $\RR \cup \RR^{-1} \cup \Delta_S = S \times S$.

Let $\tuple {a, b} \in S \times S$.


Suppose $a \ne b$.

By definition of diagonal relation:

$\tuple {a, b} \notin \Delta_S$


So, by definition of set union:

$\tuple {a, b} \in \RR$

or:

$\tuple {a, b} \in \RR^{-1}$


That is, by definition of inverse relation:

$\tuple {a, b} \in \RR$

or:

$\tuple {b, a} \in \RR$


So by definition $\RR$ is connected.

$\blacksquare$


Also see