Relative Complement of Cartesian Product/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ and $B$ be sets.

Let $X \subseteq A$ and $Y \subseteq B$.


Then:

$\relcomp {A \mathop \times B} {X \times Y} = \paren {A \times \relcomp B Y} \cup \paren {\relcomp A X \times B}$


Proof

\(\ds \) \(\) \(\ds \relcomp {A \mathop \times B} {X \times Y}\)
\(\ds \leadstoandfrom \ \ \) \(\ds \) \(\) \(\ds A \times B \setminus X \times Y\) Definition of Relative Complement
\(\ds \leadstoandfrom \ \ \) \(\ds \) \(\) \(\ds \set {\tuple {x, y}: x \in A \land y \in B \land \neg \paren {x \in X \land y \in Y} }\) Definition of Cartesian Product
\(\ds \leadstoandfrom \ \ \) \(\ds \) \(\) \(\ds \set {\tuple {x, y}: x \in A \land y \in B \land \paren {x \notin X \lor y \notin Y} }\) De Morgan's Laws: Disjunction of Negations
\(\ds \leadstoandfrom \ \ \) \(\ds \) \(\) \(\ds \paren {A \times \relcomp B Y} \cup \paren {\relcomp A X \times B}\) Definition of Cartesian Product

and so by definition of set equality:

$\relcomp {A \mathop \times B} {X \times Y} = \paren {A \times \relcomp B Y} \cup \paren {\relcomp A X \times B}$

$\blacksquare$