Relativisation is Standard Model

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $P$ be a well-formed formula.

Let $A$ be a finite set such that $x \in A$ if and only if $x$ is a free variable in $P$.


Then:

$A \subseteq B \implies \paren {B \models P \iff P^B}$




Proof

The proof proceeds by Induction on Well-Formed Formulas of $P$.

$P$ must be of the form:

$x \in y$
$\paren {Q \land R}$
$\neg Q$

or:

$\forall x: Q$

for some propositions $Q$ and $R$.


Atoms

Let $P$ be of the form $x \in y$.

Then:

$A = \set {x, y}$

By definition of standard structure:

$B \models P \iff \paren {x \in y \land x \in B \land y \in B}$

By definition of relativisation:

$P^B \iff x \in y$

If $A \subseteq B$, then:

$x \in B \land y \in B$

and the two statements are equivalent.


Inductive Step for $\neg$

Let $P$ be of the form $\neg Q$ and that the statement holds for $Q$.

Then the free variables in $Q$ are precisely those in $P$.

\(\ds A \subseteq B\) \(\leadsto\) \(\ds \paren {B \models Q \iff Q^B}\) Inductive Hypothesis
\(\ds \) \(\leadsto\) \(\ds \paren {\neg B \models Q \iff \neg Q^B}\)
\(\ds \) \(\leadsto\) \(\ds \paren {B \models P \iff P^B}\) Definition of $P$


Inductive Step for $\implies$

Suppose $P$ is of the form $\paren {Q \implies R}$.

Suppose, further, that the statement holds for $Q$ and $R$.

The free variables of $Q$ and $R$ have to all be members of $A$, and thus are members of $B$ since $A \subseteq B$.

\(\ds A \subseteq B\) \(\leadsto\) \(\ds \paren {B \models Q \iff Q^B} \land \paren {B \models R \iff R^B}\) Inductive Hypothesis
\(\ds \) \(\leadsto\) \(\ds \paren {\paren {B \models Q \land B \models R} \iff \paren {Q^B \land R^B} }\)
\(\ds \) \(\leadsto\) \(\ds \paren {B \models P \iff P^B}\) Definition of Standard Structure and Definition of Relativisation


Inductive Step for $\forall x:$

Let $P$ be of the form:

$\forall x: Q$

Let the statement hold for $Q$.

Then the free variables of $Q$ are either in $A$ or $x$.

Furthermore, $x \notin A$ because:

$x \in A \implies x$ is a free variable in $\forall x: Q$

which is a contradiction.

\(\ds A \subseteq B \land x \in B\) \(\leadsto\) \(\ds \paren {B \models Q \iff Q^B}\) Inductive Hypothesis
\(\ds A \subseteq B\) \(\leadsto\) \(\ds \paren {\paren {x \in B \implies B \models Q} \iff \paren {x \in B \implies Q^B} }\) Propositional logic manipulation
\(\ds \) \(\leadsto\) \(\ds \paren {\forall x \in B: B \models Q \iff \forall x \in B: Q^B}\) Universal Generalization
\(\ds \) \(\leadsto\) \(\ds \paren {B \models P \iff P^B}\) Definition of Standard Structure and Definition of Relativisation

$\blacksquare$


Sources