Repunit Integer as Product of Base - 1 by Increasing Digit Integer

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds 9 \times 1 + 2\) \(=\) \(\ds 11\)
\(\ds 9 \times 12 + 3\) \(=\) \(\ds 111\)
\(\ds 9 \times 123 + 4\) \(=\) \(\ds 1111\)
\(\ds 9 \times 1234 + 5\) \(=\) \(\ds 11111\)
\(\ds 9 \times 12345 + 6\) \(=\) \(\ds 11111\)
\(\ds \) \(\ldots\) \(\ds \)

That is:

$\ds 9 \sum_{j \mathop = 0}^n \paren {n - j} 10^j + n + 1 = \sum_{j \mathop = 0}^n 10^j$


General Result

$\ds \paren {b - 1} \sum_{j \mathop = 0}^n \paren {n - j} b^j + n + 1 = \sum_{j \mathop = 0}^n b^j$


Proof

A specific instance of the general result:

$\ds \paren {b - 1} \sum_{j \mathop = 0}^n \paren {n - j} b^j + n + 1 = \sum_{j \mathop = 0}^n b^j$


where $b = 10$.

$\blacksquare$


Sources