Rescaling is Linear Transformation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \cdot}$ be a commutative ring.

Let $\struct {V, +, \circ}_R$ be an $R$-module.


Then for any $r \in R$, the rescaling:

$m_r: V \to V, v \mapsto r \circ v$

is a linear transformation.


Proof

Let $v \in V$ and $s \in R$.

Then:

\(\ds \map {m_r} {s \circ v}\) \(=\) \(\ds r \circ \paren {s \circ v}\) Definition of Rescaling
\(\ds \) \(=\) \(\ds \paren {r \cdot s} \circ v\) $V$ is an $R$-module
\(\ds \) \(=\) \(\ds \paren {s \cdot r} \circ v\) $R$ is a commutative ring
\(\ds \) \(=\) \(\ds s \circ \paren {r \circ v}\) $V$ is an $R$-module
\(\ds \) \(=\) \(\ds s \circ \map {m_r} v\) Definition of Rescaling


Next, for $v, w \in V$:

\(\ds m_r \paren {v + w}\) \(=\) \(\ds r \circ \paren {v + w}\) Definition of Rescaling
\(\ds \) \(=\) \(\ds r \circ v + r \circ w\) $V$ is an $R$-module
\(\ds \) \(=\) \(\ds \map {m_r} v + \map {m_r} w\) Definition of Rescaling


It follows that $m_r$ is a linear transformation.

$\blacksquare$