Residue of Gamma Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Gamma$ be the Definition:Gamma Function.

Let $n$ be a non-negative integer.

Then:

$\Res \Gamma {-n} = \dfrac {\paren {-1}^n} {n!}$


Proof

By Poles of Gamma Function, $\Gamma$ has simple poles at the non-positive integers, so $-n$ is a simple pole of $\Gamma$.

Then:

\(\ds \Res \Gamma {-n}\) \(=\) \(\ds \lim_{z \mathop \to -n} \paren {z - \paren {-n} } \map \Gamma z\) Residue at Simple Pole
\(\ds \) \(=\) \(\ds \lim_{z \mathop \to -n} \paren {z + n} \paren {\frac {z \paren {z + 1} \ldots \paren {z + n} } {z \paren {z + 1} \ldots \paren {z + n} } } \map \Gamma z\) multiplying by $1$
\(\ds \) \(=\) \(\ds \lim_{z \mathop \to -n} \paren {z + n} \frac {\map \Gamma {z + n + 1} } {z \paren {z + 1} \ldots \paren {z + n} }\) Gamma Difference Equation
\(\ds \) \(=\) \(\ds \lim_{z \mathop \to -n} \frac {\map \Gamma {z + n + 1} } {z \paren {z + 1} \ldots \paren {z + n - 1} }\) cancelling $z + n$
\(\ds \) \(=\) \(\ds \frac {\map \Gamma 1} {-n \paren {-n + 1} \ldots \paren {-1} }\)
\(\ds \) \(=\) \(\ds \frac 1 {\paren {-1}^n \paren {n \paren {n - 1} \ldots \paren 1} }\) $\map \Gamma 1 = 1$
\(\ds \) \(=\) \(\ds \frac 1 {\paren {-1}^n n!}\) Definition of Factorial
\(\ds \) \(=\) \(\ds \frac {\paren {-1}^n} {n!}\)

$\blacksquare$