Restriction of Antitransitive Relation is Antitransitive

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $\RR \subseteq S \times S$ be an antitransitive relation on $S$.


Let $T \subseteq S$ be a subset of $S$.

Let $\RR {\restriction_T} \subseteq T \times T$ be the restriction of $\RR$ to $T$.


Then $\RR {\restriction_T}$ is an antitransitive relation on $T$.


Proof

Suppose $\RR$ is antitransitive on $S$.

Then by definition:

$\set {\tuple {x, y}, \tuple {y, z} } \subseteq \RR \implies \tuple {x, z} \notin \RR$


So:

\(\ds \set {\tuple {x, y}, \tuple {y, z} }\) \(\subseteq\) \(\ds \RR {\restriction_T}\)
\(\ds \leadsto \ \ \) \(\ds \set {\tuple {x, y}, \tuple {y, z} }\) \(\subseteq\) \(\ds \paren {T \times T} \cap \RR\) Definition of Restriction of Relation
\(\ds \leadsto \ \ \) \(\ds \tuple {x, z}\) \(\notin\) \(\ds \paren {T \times T} \cap \RR\) as $\RR$ is antitransitive on $S$
\(\ds \leadsto \ \ \) \(\ds \tuple {x, z}\) \(\in\) \(\ds \RR {\restriction_T}\) Definition of Restriction of Relation


Therefore, if $x, y, z \in T$, it follows that:

$\set {\tuple {x, y}, \tuple {y, z} } \subseteq \RR {\restriction_T} \implies \tuple {x, z} \notin \RR {\restriction_T}$

and so by definition $\RR {\restriction_T}$ is an antitransitive relation on $T$.

$\blacksquare$


Also see