Restriction of Composition is Composition of Restriction

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X, Y, Z$ be sets.

Let $f: X \to Y$ and $g: Y \to Z$ be mappings.

Let $S \subseteq X$.


Then:

$\paren {g \circ f} \restriction S = g \circ \paren {f \restriction S}$


Proof

By definitions of composition of mappings and restriction of mapping:

$\paren {g \circ f} \restriction S: S \to Z$ and $g \circ \paren {f \restriction S}: S \to Z$

Let $s \in S$.

By definition of restriction of mapping:

$\map {\paren {\paren {g \circ f} \restriction S} } s = \map {\paren {g \circ f} } s$

Thus

\(\ds \map {\paren {g \circ \paren {f \restriction S} } } s\) \(=\) \(\ds \map g {\map {\paren {f \restriction S} } s}\) Definition of Composition of Mappings
\(\ds \) \(=\) \(\ds \map g {\map f s}\) Definition of Restriction of Mapping
\(\ds \) \(=\) \(\ds \map {\paren {\paren {g \circ f} \restriction S} } s\) Definition of Composition of Mappings

$\blacksquare$


Sources