Restriction of Mapping is Mapping
Theorem
Let $f: S \to T$ be a mapping.
Let $X \subseteq S$.
Let $f \restriction_X$ be the restriction of $f$ to $X$.
Then $f \restriction_X: X \to T$ is a mapping:
General Result
Let $f: S \to T$ be a mapping.
Let $X \subseteq S$.
Let $f \sqbrk X \subseteq Y \subseteq T$.
Let $f \restriction_{X \times Y}$ be the restriction of $f$ to $X \times Y$.
Then $f \restriction_{X \times Y}: X \to Y$ is a mapping:
Proof
As $f: S \to T$ is a mapping, we have that:
- $\forall x \in S: \tuple {x, y_1} \in f \land \tuple {x, y_2} \in f \implies y_1 = y_2$
From the definition of a subset, $x \in X \implies x \in S$, and so:
- $\forall x \in X: \tuple {x, y_1} \in f \restriction_X \land \tuple {x, y_2} \in f \restriction_X \implies y_1 = y_2$
Also from the definition of a mapping:
- $\forall x \in S: \exists y \in T: \tuple {x, y} \in f$
Again from the definition of a subset, $x \in X \implies x \in S$, and so:
- $\forall x \in X: \exists y \in T: \tuple {x, y} \in f \restriction_X$
So $f \restriction_X: X \to T$ is a mapping.
The fact that the domain of $f \restriction_X$ is $X$ follows from the definition of domain.
The fact that the preimage of $f \restriction_X$ is also $X$ follows from Preimage of Mapping equals Domain.
$\blacksquare$