Restriction of Operation Distributivity
Jump to navigation
Jump to search
Theorem
Let $\struct {S, *, \circ}$ be an algebraic structure.
Let $T \subseteq S$.
If the operation $\circ$ is distributive over $*$ in $\struct {S, *, \circ}$, then it is also distributive over $*$ on a restriction $\struct {T, * \restriction_T, \circ \restriction_T}$.
Proof
\(\ds \) | \(\) | \(\ds T \subseteq S\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \) | \(\) | \(\ds \forall a, b, c \in T: a, b, c \in S\) | Definition of Subset | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \) | \(\) | \(\ds a \circ_T \paren {b *_T c}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds a \circ \paren {b * c}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a \circ b} * \paren {a \circ c}\) | as $\circ$ is distributive over $*$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a \circ_T b} *_T \paren {a \circ_T c}\) |
Similarly for $\paren {a *_T b} \circ_T c = \paren {a \circ_T c} *_T \paren {b \circ_T c}$.
$\blacksquare$