Reverse Triangle Inequality/Real and Complex Fields/Corollary/Proof 2
Jump to navigation
Jump to search
Theorem
Let $x$ and $y$ be elements of either the real numbers $\R$ or the complex numbers $\C$.
Then:
- $\cmod {x - y} \ge \cmod x - \cmod y$
where $\cmod x$ denotes either the absolute value of a real number or the complex modulus of a complex number.
Proof
By the Triangle Inequality:
- $\cmod {x + y} - \cmod y \le \cmod x$
Let $z = x + y$.
Then $x = z - y$ and so:
- $\cmod z - \cmod y \le \cmod {z - y}$
Renaming variables as appropriate gives:
- $\cmod {x - y} \ge \cmod x - \cmod y$
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 1$: Real Numbers: $\S 1.18$
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Solved Problems: Graphical Representations of Complex Numbers. Vectors: $7 \ \text{(c)}$