Reverse Triangle Inequality/Real and Complex Fields/Corollary/Proof 2

From ProofWiki
Jump to navigation Jump to search


Let $x$ and $y$ be elements of either the real numbers $\R$ or the complex numbers $\C$.


$\cmod {x - y} \ge \cmod x - \cmod y$

where $\cmod x$ denotes either the absolute value of a real number or the complex modulus of a complex number.


By the Triangle Inequality:

$\cmod {x + y} - \cmod y \le \cmod x$

Let $z = x + y$.

Then $x = z - y$ and so:

$\cmod z - \cmod y \le \cmod {z - y}$

Renaming variables as appropriate gives:

$\cmod {x - y} \ge \cmod x - \cmod y$