Reverse Triangle Inequality/Real and Complex Fields/Corollary 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ and $y$ be elements of either the real numbers $\R$ or the complex numbers $\C$.

Then:

$\size {x + y} \ge \size x - \size y$

where $\size x$ denotes either the absolute value of a real number or the complex modulus of a complex number.


Proof

Let $x$ and $y$ be elements of either the real numbers $\R$ or the complex numbers $\C$.

Let $z := -y$.


Then we have:

\(\ds \size {x - z}\) \(\ge\) \(\ds \size x - \size z\) Reverse Triangle Inequality for Real and Complex Fields: Corollary $1$
\(\ds \size {x - \paren {-y} }\) \(\ge\) \(\ds \size x - \size {-y}\) Definition of $z$
\(\ds \leadsto \ \ \) \(\ds \size {x + y}\) \(\ge\) \(\ds \size x - \size {-y}\)
\(\ds \leadsto \ \ \) \(\ds \size {x + y}\) \(\ge\) \(\ds \size x - \size y\) as $\size y = \size {-y}$

Hence the result.

$\blacksquare$


Sources