Riemann Zeta Function and Prime Counting Function

From ProofWiki
Jump to navigation Jump to search

Theorem

For $\map \Re s > 1$:

$\ds \log \map \zeta s = s \int_0^{\mathop \to \infty} \frac {\map \pi x} {x \paren {x^s - 1} } \rd x$

where:

$\zeta$ denotes the Riemann Zeta Function
$\pi$ denotes the Prime-Counting Function.


Proof

From the definition of the Riemann Zeta Function:

\(\ds \map \zeta s\) \(=\) \(\ds \prod_p \frac 1 {1 - p^{-s} }\)
\(\ds \leadsto \ \ \) \(\ds \log \map \zeta s\) \(=\) \(\ds \log \prod_p \frac 1 {1 - p^{-s} }\)
\(\ds \) \(=\) \(\ds \sum_p \map \log {\frac 1 {1 - p^{-s} } }\) Sum of Logarithms
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \paren {\map \pi n - \map \pi {n - 1} } \map \log {\frac 1 {1 - n^{-s} } }\) Definition of Prime-Counting Function
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \map \pi n \paren {\map \log {\frac 1 {1 - n^{-s} } } - \map \log {\frac 1 {1 - \paren {n + 1}^{-s} } } }\) as $\map \pi {-1} = 0$
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \map \pi n \paren {\map \log {1 - \paren {n + 1}^{-s} } - \map \log {1 - n^{-s} } }\) Logarithm of Power


By Derivative of Logarithm Function and the Chain Rule for Derivatives:

\(\ds \frac \d {\d x} \map \log {1 - x^{-s} }\) \(=\) \(\ds \frac {s x^{- s - 1} } {1 - x^{-s} }\)
\(\ds \) \(=\) \(\ds \frac s {x \paren {x^s - 1} }\)

Hence:

\(\ds \log \map \zeta s\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \map \pi n \int_n^{n + 1} \frac s {x \paren {x^s - 1} } \rd x\) Fundamental Theorem of Calculus
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty s \int_n^{n + 1} \frac {\map \pi x} {x \paren {x^s - 1} } \rd x\)
\(\ds \) \(=\) \(\ds s \int_0^{\mathop \to \infty} \frac {\map \pi x} {x \paren {x^s - 1} } \rd x\)

$\blacksquare$