Riemann Zeta Function at Even Integers/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The Riemann $\zeta$ function can be calculated for even integers as follows:

\(\ds \map \zeta {2 n}\) \(=\) \(\ds \paren {-1}^{n + 1} \dfrac {B_{2 n} 2^{2 n - 1} \pi^{2 n} } {\paren {2 n}!}\)
\(\ds \) \(=\) \(\ds \frac 1 {1^{2 n} } + \frac 1 {2^{2 n} } + \frac 1 {3^{2 n} } + \frac 1 {4^{2 n} } + \cdots\)

where:

$B_n$ are the Bernoulli numbers
$n$ is a positive integer.


Proof

Lemma

Let $x \in \R$ be such that $\size x < 1$.

Then:

$\ds \pi x \cot {\pi x} = 1 - 2 \sum_{n \mathop = 1}^\infty \map \zeta {2 n} x^{2 n}$

where $\zeta$ denotes the Riemann zeta function.


We also have:

\(\ds \pi x \cot {\pi x}\) \(=\) \(\ds i \pi x \frac {e^{i \pi x} + e^{- i \pi x} } {e^{i \pi x} - e^{- i \pi x} }\) Euler's Cotangent Identity
\(\ds \) \(=\) \(\ds i \pi x \frac {e^{2 i \pi x} + 1} {e^{2 i \pi x} - 1}\)
\(\ds \) \(=\) \(\ds i \pi x \paren {1 + \frac 2 {e^{2 i \pi x} - 1} }\)
\(\ds \) \(=\) \(\ds i \pi x + \frac {2 i \pi x} {e^{2 i \pi x} - 1}\)
\(\ds \) \(=\) \(\ds i \pi x + \sum_{n \mathop = 0}^\infty \frac {B_n \paren {2 i \pi x}^n} {n!}\) Definition of Bernoulli Numbers
\(\ds \) \(=\) \(\ds 1 + \sum_{n \mathop = 2}^\infty \frac {B_n \paren {2 i \pi x}^n} {n!}\) as $B_0 = 1$ and $B_1 = - \dfrac 1 2$
\(\ds \) \(=\) \(\ds 1 - 2 \sum_{n \mathop = 2}^\infty \paren {-\frac 1 2} \frac {B_n \paren {2 i \pi x}^n} {n!}\)
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds 1 - 2 \sum_{n \mathop = 1}^\infty \paren {-\frac 1 2} \frac {B_{2 n} \paren {2 i \pi x}^{2 n} } {\paren {2 n}!}\) Odd Bernoulli Numbers Vanish


Equating the coefficients of $(1)$ with the expression given in the Lemma:

$\map \zeta {2 n} = \paren {-1}^{n + 1} \dfrac {B_{2 n} 2^{2 n - 1} \pi^{2 n} } {\paren {2 n}!}$

$\blacksquare$