Riemann Zeta Function at Even Integers/Examples/2

From ProofWiki
Jump to navigation Jump to search

Example of Riemann Zeta Function at Even Integers

The Riemann zeta function of $2$ is given by:

\(\ds \map \zeta 2\) \(=\) \(\ds \dfrac 1 {1^2} + \dfrac 1 {2^2} + \dfrac 1 {3^2} + \dfrac 1 {4^2} + \cdots\)
\(\ds \) \(=\) \(\ds \dfrac {\pi^2} 6\)
\(\ds \) \(\approx\) \(\ds 1 \cdotp 64493 \, 4066 \ldots\)

This sequence is A013661 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).


Proof

\(\ds \zeta \left({2}\right)\) \(=\) \(\ds \left({-1}\right)^2 \dfrac {B_2 2^1 \pi^2} {2!}\) Riemann Zeta Function at Even Integers
\(\ds \) \(=\) \(\ds \left({-1}\right)^2 \left({\dfrac 1 6}\right) \dfrac {2^1 \pi^2} {2!}\) Definition of Sequence of Bernoulli Numbers
\(\ds \) \(=\) \(\ds \left({\dfrac 1 6}\right) \left({\dfrac 2 2}\right) \pi^2\) Definition of Factorial
\(\ds \) \(=\) \(\ds \dfrac {\pi^2} 6\) simplifying

$\blacksquare$


The decimal expansion can be found by an application of arithmetic.


Sources