Riemann Zeta Function of 4/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The Riemann zeta function of $4$ is given by:

\(\ds \map \zeta 4\) \(=\) \(\ds \dfrac 1 {1^4} + \dfrac 1 {2^4} + \dfrac 1 {3^4} + \dfrac 1 {4^4} + \cdots\)
\(\ds \) \(=\) \(\ds \dfrac {\pi^4} {90}\)
\(\ds \) \(\approx\) \(\ds 1 \cdotp 08232 \, 3 \ldots\)


Proof

By Fourier Series of Fourth Power of x, for $x \in \closedint {-\pi} \pi$:

$\ds x^4 = \frac {\pi^4} 5 + \sum_{n \mathop = 1}^\infty \frac {8 n^2 \pi^2 - 48} {n^4} \map \cos {n \pi} \map \cos {n x}$

Setting $x = \pi$:

\(\ds \pi^4\) \(=\) \(\ds \frac {\pi^4} 5 + \sum_{n \mathop = 1}^\infty \frac {8 n^2 \pi^2 - 48} {n^4} \map {\cos^2} {n \pi}\)
\(\ds \leadsto \ \ \) \(\ds \frac {4 \pi^4} 5\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac {8 n^2 \pi^2} {n^4} - \sum_{n \mathop = 1}^\infty \frac {48} {n^4}\) Cosine of Multiple of Pi
\(\ds \leadsto \ \ \) \(\ds \frac {\pi^4} 5\) \(=\) \(\ds 2 \pi^2 \sum_{n \mathop = 1}^\infty \frac 1 {n^2} - 12 \sum_{n \mathop = 1}^\infty \frac 1 {n^4}\)
\(\ds \) \(=\) \(\ds \frac {\pi^4} 3 - 12 \sum_{n \mathop = 1}^\infty \frac 1 {n^4}\) Basel Problem
\(\ds \leadsto \ \ \) \(\ds 12 \sum_{n \mathop = 1}^\infty \frac 1 {n^4}\) \(=\) \(\ds \frac {\pi^4} 3 - \frac {\pi^4} 5\) rearranging
\(\ds \) \(=\) \(\ds \frac {2 \pi^4} {15}\)
\(\ds \leadsto \ \ \) \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {n^4}\) \(=\) \(\ds \frac {\pi^4} {90}\)

$\blacksquare$