Riemann Zeta Function of 4/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

The Riemann zeta function of $4$ is given by:

\(\ds \map \zeta 4\) \(=\) \(\ds \dfrac 1 {1^4} + \dfrac 1 {2^4} + \dfrac 1 {3^4} + \dfrac 1 {4^4} + \cdots\)
\(\ds \) \(=\) \(\ds \dfrac {\pi^4} {90}\)
\(\ds \) \(\approx\) \(\ds 1 \cdotp 08232 \, 3 \ldots\)


Proof

By Fourier Series of x squared, for $x \in \closedint {-\pi} \pi$:

$\ds x^2 = \frac {\pi^2} 3 + \sum_{n \mathop = 1}^\infty \paren {\paren {-1}^n \frac 4 {n^2} \cos n x}$


Hence:

\(\ds \frac 1 \pi \int_{-\pi}^\pi x^4 \rd x\) \(=\) \(\ds \frac 1 2 \paren {\frac {2 \pi^2} 3}^2 + \sum_{n \mathop = 1}^\infty \paren {\frac {4 \paren {-1}^n} {n^2} }^2\) Parseval's Theorem
\(\ds \leadsto \ \ \) \(\ds \frac 2 \pi \int_0^\pi x^4 \rd x\) \(=\) \(\ds \frac {2 \pi^4} 9 + \sum_{n \mathop = 1}^\infty \frac {16} {n^4}\) Definite Integral of Even Function
\(\ds \leadsto \ \ \) \(\ds \frac {2 \pi^4} 5\) \(=\) \(\ds \frac {2 \pi^4} 9 + \sum_{n \mathop = 1}^\infty \frac {16} {n^4}\)
\(\ds \leadsto \ \ \) \(\ds \frac {8 \pi^4} {45}\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac {16} {n^4}\)
\(\ds \leadsto \ \ \) \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {n^4}\) \(=\) \(\ds \frac {\pi^4} {90}\)

$\blacksquare$