Riesz-Markov-Kakutani Representation Theorem/Lemma 2

From ProofWiki
Jump to navigation Jump to search

Lemma for Riesz-Markov-Kakutani Representation Theorem

Let $\struct {X, \tau}$ be a locally compact Hausdorff space.

Let $\map {C_c} X$ be the space of continuous complex functions with compact support on $X$.

Let $\Lambda$ be a positive linear functional on $\map {C_c} X$.

There exists a $\sigma$-algebra $\MM$ over $X$ which contains the Borel $\sigma$-algebra of $\struct {X, \tau}$.

There exists a unique complete Radon measure $\mu$ on $\MM$ such that:

$\ds \forall f \in \map {C_c} X: \Lambda f = \int_X f \rd \mu$


Notation

For an open set $V \in \tau$ and a mapping $f \in \map {C_c} X$:

$f \prec V \iff \supp f \subset V$

where $\supp f$ denotes the support of $f$.




For a compact set $K \subset X$ and a mapping $f \in \map {C_c} X$:

$K \prec f \iff \forall x \in K: \map f x = 1$


Construction of $\mu$ and $\MM$

For every $V \in \tau$, define:

$\map {\mu_1} V = \sup \set {\Lambda f: f \prec V}$



Note that $\mu_1$ is monotonically increasing.

That is, for all $V, W \in \tau$ such that $V \subset W$, we have:

\(\ds \map {\mu_1} V\) \(=\) \(\ds \sup \set {\Lambda f: \supp f \subset V}\)
\(\ds \) \(\le\) \(\ds \sup \set {\Lambda f: \supp f \subset W}\) \(\ds = \map {\mu_1} W\)

$\Box$

For every other subset $E \subset X$, define:

$\map \mu E = \inf \set {\map {\mu_1} V: V \supset E \land V \in \tau}$

Since $\mu_1$ is monotonically increasing:

$\mu_1 = \mu {\restriction_\tau}$

Define:

$\MM_F = \set {E \subset X : \map \mu E < \infty \land \map \mu E = \sup \set {\map \mu K: K \subset E \land K \text { compact} } }$

Define:

$\MM = \set {E \subset X : \forall K \subset X \text { compact}: E \cap K \in \MM_F}$


Lemma

Let $K \subset X$ be compact.

Then:

$K \in \MM_F$

and:

$\map \mu K = \inf \set {\Lambda f : K \prec f}$


Proof

Let $f \in \map {C_c} X: K \prec f$.

Let $\alpha \in \R \cap \openint 0 1$.



Define:

$V_\alpha = \map {f^{-1} } {\openint \alpha \to}$

Then $K \in V_\alpha$ and:

$\forall g: \map {C_c} X: g \prec V_\alpha: \alpha g \le f$



Thus:

\(\ds \map \mu K\) \(\le\) \(\ds \map \mu {V_\alpha}\)
\(\ds \) \(=\) \(\ds \sup \set {\Lambda g : g \prec V_\alpha}\)
\(\ds \) \(\le\) \(\ds \alpha^{-1} \Lambda f\)


Since $\alpha$ can be arbitrarily close to $1$:

$\map \mu K \le \inf \set {\Lambda f: K \prec f}$

By definition of $\mu$, for all $\epsilon \in \R_{>0}$, there exists a $V \in \tau: V \supset K$ such that:

$\map \mu V < \map \mu K + \epsilon$

By Urysohn's Lemma, there exists an Urysohn function $f$ for $K$ and $V$.

By definition of $\mu$:

$\Lambda f \le \map \mu V < \map \mu K + \epsilon$

Since $\epsilon$ was arbitrary:

$\map \mu K \ge \inf \set {\Lambda f: K \prec f}$

Therefore:

$\map \mu K = \inf \set {\Lambda f: K \prec f}$

By definition of positive linear functional, $\Lambda$ is finite.

Thus:

$\map \mu K < \infty$

So:

$K \in \MM_F$

$\blacksquare$