Riesz Representation Theorem (Hilbert Spaces)/Examples/Space of Square Summable Mappings
Jump to navigation
Jump to search
Example of Use of Riesz Representation Theorem (Hilbert Spaces)
Let $\map {\ell^2} \N$ be the space of square summable mappings on $\N$.
Let $N \in \N$.
Let $L_N: \map {\ell^2} \N \to \GF$ be defined by:
- $\map {L_N} {\sequence{ a_n } } := a_N$
Let $\delta_N \in \map {\ell^2} \N$ be given by:
- $\forall n \in \N: \paren{ \delta_N }_n = \begin{cases} 1 & n = N \\ 0 & n \ne N \end{cases}$
Then for all $a \in \map {\ell^2} \N$:
- $\map {L_N} a = \innerprod a {\delta_N}$
Proof
By Space of Square Summable Mappings is Hilbert Space, $\map {\ell^2} \N$ is a Hilbert space.
Since for all $a \in \map {\ell^2} \N$:
\(\ds \cmod{ \map {L_n} a }\) | \(=\) | \(\ds \cmod{ a_N }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt{ \cmod{ a_N }^2 }\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \sqrt{ \sum_{n \mathop \in \N} \cmod{ a_n }^2 }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \norm a\) |
it follows that $L_N$ is a bounded linear functional.
Hence the Riesz Representation Theorem (Hilbert Spaces) applies, so that there exists a unique $b \in \map {\ell^2} \N$ such that for all $a \in \map {\ell^2} \N$:
- $\map {L_N} a = \innerprod a b$
Let us check that $\delta_N$ fulfils the claim:
\(\ds \innerprod a {\delta_N}\) | \(=\) | \(\ds \sum_{n \mathop \in \N} a_n \paren{ \delta_N }_n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a_N\) | since $\paren {\delta_N}_n = 0$ for $n \ne N$ |
The result follows.
$\blacksquare$
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next): $\text{I}$ Hilbert Spaces: $\S 3.$ The Riesz Representation Theorem: Exercise $2$