Right Module over Commutative Ring induces Left Module

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +_R, \times_R}$ be a commutative ring.

Let $\struct{G, +_G, \circ}$ be a right module over $\struct {R, +_R, \times_R}$.

Let $\circ’ : R \times G \to G$ be the binary operation defined by:

$\forall \lambda \in R: \forall x \in G: \lambda \circ’ x = x \circ \lambda$


Then $\struct{G, +_G, \circ’}$ is a left module over $\struct {R, +_R, \times_R}$.

Proof

From Ring is Commutative iff Opposite Ring is Itself, $\struct {R, +_R, \times_R}$ is its own opposite ring.

From Right Module over Ring Induces Left Module over Opposite Ring, $\struct{G, +_G, \circ’}$ is a left module over $\struct {R, +_R, \times_R}$.

$\blacksquare$

Also see

Sources