Nth Root Test

From ProofWiki
(Redirected from Root Test)
Jump to navigation Jump to search

Theorem

Let $\ds \sum_{n \mathop = 1}^\infty a_n$ be a series of real numbers $\R$ or complex numbers $\C$.

Let the sequence $\sequence {a_n}$ be such that the limit superior $\ds \limsup_{n \mathop \to \infty} \size {a_n}^{1/n} = l$.

Then:

If $l > 1$, the series $\ds \sum_{n \mathop = 1}^\infty a_n$ diverges.
If $l < 1$, the series $\ds \sum_{n \mathop = 1}^\infty a_n$ converges absolutely.


Weak Form

If we restrict our domain of $\sequence {a_n}$ to the strictly positive, we can use a weaker form:


Let $\ds \sum_{n \mathop = 1}^\infty a_n$ be a series of (strictly) positive real numbers $\R$.

Let the sequence $\sequence {a_n}$ be such that the limit $\ds \lim_{n \mathop \to \infty} \size {a_n}^{1/n} = l$.

Then:

If $l > 1$, the series $\ds \sum_{n \mathop = 1}^\infty a_n$ diverges.
If $l < 1$, the series $\ds \sum_{n \mathop = 1}^\infty a_n$ converges absolutely.


Proof

Absolute Convergence

Let $l < 1$.

Then let us choose $\epsilon > 0$ such that $l + \epsilon < 1$.

Consider the real sequence $\sequence {b_n}$ defined by $\sequence {b_n} = \sequence {\size {a_n} }$.

Here, $\size {a_n}$ denotes either the absolute value of $a_n$, or the complex modulus of $a_n$.

Then:

$\ds l = \limsup_{n \mathop \to \infty} {b_n}^{1/n}$

It follows from Terms of Bounded Sequence Within Bounds that for sufficiently large $n$,:

$b_n < \paren {l + \epsilon}^n$

By Sum of Infinite Geometric Sequence, the series $\ds \sum_{n \mathop = 1}^\infty \paren {l + \epsilon}^n$ converges.

By the comparison test, $\ds \sum_{n \mathop = 1}^\infty b_n$ converges.

Hence $\ds \sum_{n \mathop = 1}^\infty a_n$ converges absolutely by the definition of absolute convergence.

$\Box$


Divergence

Let $l > 1$.

Then we choose $\epsilon > 0$ such that $l - \epsilon > 1$.

Aiming for a contradiction, suppose that there exist an upper bound for the set:

$S := \set {n \in \N: \size {a_n}^{1/n} > l - \epsilon}$

Then for all sufficiently large $n$:

$\size {a_n}^{1/n} \le l - \epsilon$

However, this implies that:

$\ds \limsup_{n \mathop \to \infty} \size {a_n}^{1/n} \le l - \epsilon$

which is false by the definition of $l$.

The set $S$, then, is not bounded.

This means that there exist arbitrarily large $n$ such that:

$\size {a_n} > \paren {l - \epsilon}^n$

Thus:

$\ds \lim_{n \mathop \to \infty} \size {a_n} \ne 0$

and so $\ds \lim_{n \mathop \to \infty} a_n \ne 0$.

Hence from Terms in Convergent Series Converge to Zero, $\ds \sum_{n \mathop = 1}^\infty a_n$ must be divergent.

$\blacksquare$


Warning

If $l = 1$, the Nth Root Test provides no information on whether $\ds \sum_{n \mathop = 1}^\infty a_n$ converges absolutely, converges conditionally, or diverges.

If $\ds \limsup_{n \mathop \to \infty} \size {a_n}^{1/n} = \infty$, then of course $\ds \sum_{n \mathop = 1}^\infty a_n$ diverges.


Also known as

The Nth Root Test is also seen presented just as the Root Test.

Some sources use:

for Augustin Louis Cauchy, but these are imprecise enough for $\mathsf{Pr} \infty \mathsf{fWiki}$ to prefer Nth Root Test


Sources