Roots of Complex Number/Examples/5th Roots of -4 + 4i

From ProofWiki
Jump to navigation Jump to search

Example of Roots of Complex Number

The complex $5$th roots of $-4 + 4i$ are given by:

$\paren {-4 + 4i}^{1/5} = \set {\sqrt 2 \, \map \cis {27 + 72 k} \degrees}$

for $k = 0, 1, 2, 3, 4$.


That is:

\(\ds k = 0: \ \ \) \(\ds z = z_1\) \(=\) \(\ds \sqrt 2 \cis 27 \degrees\)
\(\ds k = 1: \ \ \) \(\ds z = z_2\) \(=\) \(\ds \sqrt 2 \cis 99 \degrees\)
\(\ds k = 2: \ \ \) \(\ds z = z_3\) \(=\) \(\ds \sqrt 2 \cis 171 \degrees\)
\(\ds k = 3: \ \ \) \(\ds z = z_4\) \(=\) \(\ds \sqrt 2 \cis 243 \degrees\)
\(\ds k = 4: \ \ \) \(\ds z = z_5\) \(=\) \(\ds \sqrt 2 \cis 315 \degrees\)


Proof

Complex 5th Roots of -4 + 4i.png


Let $z^5 = -4 + 4 i$.

We have that:

$z^5 = 4 \sqrt 2 \, \map \cis {\dfrac {3 \pi} 4 + 2 k \pi} = 4 \sqrt 2 \, \map \cis {135 \degrees + k \times 360 \degrees}$


Let $z = r \cis \theta$.

Then:

\(\ds z^5\) \(=\) \(\ds r^5 \cis 5 \theta\) De Moivre's Theorem
\(\ds \) \(=\) \(\ds 4 \sqrt 2 \, \map \cis {\dfrac {3 \pi} 4 + 2 k \pi}\)
\(\ds \leadsto \ \ \) \(\ds r^5\) \(=\) \(\ds 4 \sqrt 2\)
\(\ds 5 \theta\) \(=\) \(\ds \dfrac {3 \pi} 4 + 2 k \pi\)
\(\ds \leadsto \ \ \) \(\ds r\) \(=\) \(\ds \paren {4 \sqrt 2} ^{1/5}\)
\(\ds \) \(=\) \(\ds \sqrt 2\)
\(\ds \theta\) \(=\) \(\ds \dfrac {3 \pi} {20} + \dfrac {2 k \pi} 5\) for $k = 0, 1, 2, 3, 4$
\(\ds \) \(=\) \(\ds 27 \degrees + 72 k \degrees\) for $k = 0, 1, 2, 3, 4$

$\blacksquare$


Sources