Roots of Resolvent of Cubic
Jump to navigation
Jump to search
Theorem
Let $P$ be the cubic equation:
- $a x^3 + b x^2 + c x + d = 0$ with $a \ne 0$
Let $\map r P$ be the resolvent equation of $P$, given by:
- $u^6 - 2 R u^3 - Q^3$
Let the roots of $P$ be $\alpha_1, \alpha_2, \alpha_3$.
Then the roots of $\map r P$ can be expressed as:
\(\ds v\) | \(=\) | \(\ds \frac 1 3 \paren {\alpha_1 + \omega \alpha_2 + \omega^2 \alpha_3}\) | ||||||||||||
\(\ds \omega v\) | \(=\) | \(\ds \frac 1 3 \paren {\alpha_3 + \omega \alpha_1 + \omega^2 \alpha_2}\) | ||||||||||||
\(\ds \omega^2 v\) | \(=\) | \(\ds \frac 1 3 \paren {\alpha_2 + \omega \alpha_3 + \omega^2 \alpha_1}\) | ||||||||||||
\(\ds u\) | \(=\) | \(\ds \frac 1 3 \paren {\alpha_1 + \omega \alpha_3 + \omega^2 \alpha_2}\) | ||||||||||||
\(\ds \omega u\) | \(=\) | \(\ds \frac 1 3 \paren {\alpha_2 + \omega \alpha_1 + \omega^2 \alpha_3}\) | ||||||||||||
\(\ds \omega^2 u\) | \(=\) | \(\ds \frac 1 3 \paren {\alpha_3 + \omega \alpha_2 + \omega^2 \alpha_1}\) |
where $\omega = -\dfrac {-1 + \sqrt {-3} } 2$ is one of the primitive (complex) cube roots of $1$.
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Introduction